If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+64=1600
We move all terms to the left:
2x^2+16x+64-(1600)=0
We add all the numbers together, and all the variables
2x^2+16x-1536=0
a = 2; b = 16; c = -1536;
Δ = b2-4ac
Δ = 162-4·2·(-1536)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-112}{2*2}=\frac{-128}{4} =-32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+112}{2*2}=\frac{96}{4} =24 $
| x^2-7=-82 | | 3p^2-400=275 | | 14+22h=35+15h | | 11x-3=7x+ | | 2(3)-4y=6 | | 20/100=16/z | | 7/9d=5 | | 4p=-56 | | 2+6h=6+2h | | -4x+4(-6x-26)=-412 | | -2x-x=-45 | | 12z•7=-6z | | 2x-4x+2=3(x-1)-6 | | z-2(z-3)=14 | | -11-x=7 | | 12y-8=20y+64 | | x/2+5=60 | | 9(y+1/3)+5y=0 | | (9,3)x(8,4)=6 | | 2/3x+18+3x-25=180 | | X/4+1=x+5 | | 7/y=21/27 | | 11+c=77 | | 6a-42=7a-63 | | -2x-9=x+18 | | 10x-4(x-2)=5(2x+1)+5 | | -9+9u=10u | | 50x^2+20x-6=56x^2 | | 4=3c-11 | | 3x+14x=28 | | 1/3x^2-123/4x+1/6=0 | | 3x+-12+6=15 |